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Abstract—In this paper, we address the problem of how to
optimize the cross-layer transmission policy for delay-sensitive
video streaming over slow-varying flat-fading wireless channels
on-line, at transmission time, when the environment dynamics are
unknown. We first formulate the cross-layer optimization using a
systematic layered Markov decision process (MDP) framework,
which complies with the layered architecture of the OSI stack. Sub-
sequently, considering the unknown dynamics of the video sources
and underlying wireless channels, we propose a layered real-time
dynamic programming (LRTDP) algorithm, which requires no a
priori knowledge about the source and network dynamics. LRTDP
allows each layer to learn the dynamics on-the-fly, and adjusts its
policy autonomously, based on their experienced dynamics as well
as limited message exchanges with other layers. Unlike existing
cross-layer methods, LRTDP optimizes the cross-layer policy
in a layered and on-line fashion, exhibits a low computational
complexity, requires limited message exchanges among layers,
and is capable to adapt on-the-fly to the experienced environment
dynamics. Finally, we prove that LRTDP converges to the optimal
cross-layer policy asymptotically. Our numerical experiments
show that LRTDP provides comparable performance to the ideal-
ized optimal cross-layer solutions based on complete knowledge.

Index Terms—Layered Markov decision process, layered real-
time dynamic programming, on-line learning, wireless video trans-
mission.

I. INTRODUCTION

V IDEO transmission over error-prone wireless networks
is challenging due to a number of factors, including the

high bit-rate requirements and hard delay constraints imposed
by the video traffic, as well as the time-varying environmental
dynamics experienced by wireless users (e.g., video source
characteristics, wireless channel conditions, end-user experi-
ence and requirements, etc. [1], [2]). This paper focuses on
determining the optimal cross-layer transmission policy for
an individual wireless user (i.e., a transmitter-receiver pair)
streaming video traffic over a single-hop wireless network in
a dynamic, unknown environment. Specifically, we consider
how, depending on the experienced time-varying environ-
ment, we can optimally tradeoff the received video quality
and transmission energy for real-time video transmission, by
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judiciously and jointly adapting the transmission strategies at
various layers of the protocol stack based on the experienced
wireless environment. The cross-layer transmission strategies
can include1 adaptive power control [35] as well as modulation
and coding schemes [21] at the physical (PHY) layer, automatic
repeated request [22] at the media access control (MAC) layer,
and priority scheduling [5] at the application (APP) layer.

Cross-layer optimization has been proposed to solve the
abovementioned problem [2]–[5], which can significantly im-
prove the user’s experienced performance by jointly optimizing
the protocol parameters across various layers of the protocol
stack. However, most existing cross-layer algorithms still
exhibit several limitations.

Centralized: Most of the algorithms optimize the cross-layer
transmission strategies in a centralized fashion, as discussed in
[1] and [23]. A middleware or system-level monitor serves as
the centralized optimizer, which estimates the resource avail-
ability and environmental dynamics, optimizes the cross-layer
strategies and implements the optimal strategies for real-time
data transmission, which requires to access each layer’s
internal protocols and private data. Such approaches can
determine global optimal cross-layer policy. However, they
violate the layered network architecture, as individual layers
lose their ability to control their own protocols and algorithms.
Moreover, such cross-layer optimization solutions have very
high complexity and require heavy message exchanges (i.e.,
communication overhead) among the participating layers.

Myopic: Another common limitation of existing cross-layer
algorithms is that they focus on maximizing the instant utility,
without considering the impact of the user’s current action on
its long-term performance [24], [25]. In wireless multimedia
applications, such myopic strategy design can result in unac-
ceptable deterioration in long-term multimedia quality due to
the heterogeneous characteristics of the media traffic. Therefore,
cross-layer strategies need to be optimized in a foresighted way
by considering the effect of current actions on the future perfor-
mance.

Off-Line Optimization: The cross-layer optimization
problem was formulated within the framework of discrete-time
MDP proposed in [6], in which the wireless user no longer
passively adapts the transmission policy to its current experi-
enced dynamics; instead, each layer actively selects actions to
account for, as well as influence, the future dynamics it will
experience in order to achieve optimal long-term performance
over time, even if this requires sacrificing immediate benefits.
At each layer, conventional off-line dynamic programming

1Since we consider delay-sensitive video transmission, we assume that UDP
was used at the transport layer.
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(DP) methods (e.g., value iteration, policy iteration, etc.) are
employed to autonomously determine the optimal actions
by exchanging only limited information with other layers.
However, these DP algorithms iteratively search the optimal
transmission policy by fully sweeping the entire state space
of each layer. The optimal transmission policy is able to
be deployed only after the MDP problem has been solved,
which often incurs unacceptable delay and is unsuitable for
delay-sensitive video transmission. Moreover, and even more
importantly, the dynamic wireless environment, such as the
time-varying traffic characteristic and channel conditions are
often difficult to characterize a priori, before transmission time.
In this case, the off-line DP methods cannot be performed, due
to their requirements on complete a priori knowledge of the
environment dynamics [2], and are therefore impractical for
real-time applications, such as wireless video streaming.

To address the above problems, we propose an on-line
approach called layered real-time dynamic programming
(LRTDP) to solve the MDP-based cross-layer optimization
problem, which have the following characteristics:

1) Layered: LRTDP computes the cross-layer transmission
policy in a layered fashion, with the objective function op-
timized by different layers in a distributed manner;

2) Foresight: LRTDP maximizes the user’s long-term utility,
instead of the one-shot reward;

3) On-line: LRTDP takes advantage of indirect on-line
learning method [13] to autonomously learn the experi-
enced dynamics and adjusts the cross-layer transmission
policy in real-time;

4) Limited information: LRTDP does not require any a priori
knowledge of the system and environment.

5) Low complexity: LRTDP has low complexity and limited
inter-layer message exchanges, which decrease the opera-
tion delay and is thus important for real-time applications.

Summarizing, we make the following contributions in this
paper.

• We propose a novel layered cross-layer learning algorithm
for wireless video transmission.

• We prove that LRTDP converges to the optimal cross-layer
policy that maximizes the user’s long-term utility during
the video streaming process.

• We employ extensive experiments to compare LRTDP with
alternative cross-layer methods, and show that LRTDP de-
livers similar or better performance with lower operation
cost.

The remainder of this paper is organized as follows. In
Section II, we introduce the considered problem of video
transmission over a single wireless link and formulate it as
a formal MDP-based cross-layer optimization problem. In
Section III, we present briefly the layered off-line DP method
and discuss our proposed LRTDP method under the layered
MDP framework. Section IV presents the experiment results
and Section V concludes the paper.

II. SYSTEM MODEL AND CROSS-LAYER

PROBLEM FORMULATION

This paper considers real-time video transmission over a
single-hop slow-varying flat fading channel. In this section, we

Fig. 1. Real-time video streaming process.

model the wireless user as a system where three layers (i.e.,
APP, MAC, PHY) participate in the cross-layer optimization,
as depicted in Fig. 1. The specific details of the illustrative
model adopted in this paper can be found in Appendix A, but
the methodology proposed in this paper can be also adopted for
other models at the various layers of the OSI stack. (This is why
we provide the model’s specific details within the Appendix.)
For clarity, we use subscripts APP, MAC, and PHY to represent
quantities related to the corresponding layers, respectively. We
focus on the transmission strategy adaptation at these three
layers2 to optimize the received video quality under transmis-
sion energy constraints. As mentioned in [6], this system can
be modeled as an MDP defined across the layers. For better
illustration, we assume the system is time-slotted, with the slot
length of , as in [3], [32], and [33]. The wireless user makes
decision at the beginning of every time slot.

A. PHY Layer Model

The wireless channel experienced by the user at PHY is mod-
eled as a discrete-time Rayleigh-fading additive white Gaussian
noise channel [9]. We assume that the channel coherence time

is larger than [3], [4] such that the signal-to-noise ratio
(SNR) is constant within each time slot. The SNR at each time
slot is defined as PHY’s state to represent the channel con-
dition.

To enable our cross-layer framework to comply with the
layered architecture of protocol stack, we divide the processing
actions at each layer into two categories [6]: the external action

which controls the state transition at this layer, and the
internal action determining the QoS provided to the upper
layers. PHY’s external action is the power
allocation at the current time slot, where is the set of
applicable power allocation schemes. Several works [9], [31]
have proposed finite-state Markov chain (FSMC) to model
the transition of channel SNR across time slots. In this paper,
we further extend this Markovian SNR model into an MDP,
in which the state transition at any time slot is determined

2Since we focus on the single-hop wireless transmission, we do not need to
consider the routing at the network layer and congestion control at the transport
layer.
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not only by the current state , but also by the current
power allocation with transition probability specified
as . The details of this transition
probability structure can be found in Section A of Appendix A.
Given the channel state, the wireless user is able to adapt its
modulation and channel coding scheme, which is taken as
PHY’s internal action , where denotes
the set of applicable modulation and channel coding schemes.

PHY’s quality of service (QoS) describes services that
PHY can provide to the upper layers. It is jointly determined
by and , and are comprised of three elements: i) the
packet error rate ; ii) the data throughput ; and iii)
the cost of transmitting one packet .

B. MAC Layer Model

At MAC, the channel access is based on time division mul-
tiplexing access (TDMA), which is commonly used in 802.11a
PCF and 802.11e HCCA [5]. In TDMA-based channel access,
MAC requests spectrum access through some polling-based
mechanism, in which the available transmission time within
one time slot is divided by some Central Spectrum Moderator
(CSM) among competing wireless users [18]. The allocation
scheme deployed by CSM can be (i) a static allocation, where
the CSM is polling the various wireless users for a fixed
fraction of every time slot, based on the pre-negotiated traffic
specification and resource requirement of users [18]; or (ii)
a dynamic allocation, where the time allocation to each user
changes within every time slot, based on the time-varying
channel condition, quality and resource requirements of users
[19]. To keep our analysis simple due to space limitations, we
assume that a static allocation scheme is deployed, i.e., the
amount of transmission time allocated to each user within each
time slot is predetermined and fixed based on a priori negotia-
tion methods such as those described in [5]. Therefore, MAC’s
state , defined as the transmission opportunity (TXOP)
duration within each time slot, remains constant. It
should be noted, however, that with only simple extensions, our
results can also work in dynamic resource allocation scenarios.

MAC’s external action determines for each
wireless user. This action can be the resource requirement or
the price which the user is willing to pay for the spectrum
resources. Under the static allocation scheme, the wireless
user does not have to negotiate and compete for the resources
with other users and hence, is non-adaptive, similarly to
the state . During its TXOP, the user can perform error
control algorithms such as Automatic Repeat-reQuest (ARQ)
to improve the QoS provided to the upper layers, similar to
those used in 802.11 wireless networks [5]. MAC’s internal
action is defined as the user’s retransmission limit. The
QoS at MAC is thus jointly determined by ,
and the QoS level from PHY, with details can be found
in Section B of Appendix A.

C. APP Layer Model

At APP, the transmitter receives video data from the encoder
and schedules buffered packets deciding which of them should
be transmitted. As in [30], APP’s state within each time
slot is characterized by the amount of incoming traffic

and the amount of buffered packets , with state space cor-
respondingly represented as . The ex-
ternal action is defined as the packet scheduling
algorithm, and there is no internal action at APP since it is the
highest layer in our model and not required to provide QoS for
any upper layer.

The incoming traffic depends on the characteristics of the
transmitted video sequence, as well as the source coding al-
gorithm which is assumed to be fixed here. As shown in [8],
the temporal correlation of the traffic can be captured by an
FSMC, with state transition probability .
The transition of the output buffer state is jointly
determined by the buffer occupancy, the incoming traffic,
and the packet scheduling, with transition probability

. APP’s state transition is con-
sequently given as: .
The detailed structure of the transition probability can be found
in Section C of Appendix A.

D. System Utility Function

With the above model, we can define the state of the system
as , which can be further simplified
as , since MAC’s state is fixed and will
not affect the optimization of the transmission policy. Simi-
larly, the external and internal actions of the system are

and , respectively.
Since each layer has been modeled as an FSMC or MDP, it is

obvious that the system is also an MDP, with the state transition
probability given by: .

At each time slot, the video quality is determined by
and denoted by . At

the same time, performing external actions at each layer incurs
a cost3 , and the internal action cost has already been
considered in . Therefore, we use a weighted
sum of video quality and operation cost to define the overall
system utility at each time slot, as

(1)

where and are positive Lagrangian parameters to trade off
the video quality and operation cost4. They are selected based
on energy constraints [29]. Given that MAC is a fixed layer in
this paper, whose state and external actions remain constant, (1)
can be further simplified as

(2)

3In this paper, the cost represents the resource consumed by performing the
external actions (e.g., RF power consumed during data transmission at PHY,
competition bids at MAC, and etc.)

4The Lagrangian parameters can be determined based on the resource budgets
available for the wireless user [36] or by the network coordinator to efficiently
utilize the network resources [37]. In our manuscript, the optimal Lagrangian
multipliers have been numerically determined using the bisection method and
we focus on the internal and external action selections. We could also use sto-
chastic subgradient-based resource price update as in [38] to iteratively update
them.
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Considering the impact of current actions on the future
system evolution, the wireless user aims to find the optimal
actions such that the cumulative long-term system utility is
maximized, i.e.

(3)

where is the transmission policy, and is a dis-
count factor within [0, 1). When , the problem becomes
a optimal myopic decision problem, where the user only con-
siders maximizing the immediate utility received within the cur-
rent time slot. Note that should be less than 1 because: i) for
delay-sensitive video applications, the data needs to be sent out
as soon as possible to avoid missing delay deadlines and hence,
utilities closer to “present” are considered to be more important;
ii) the undiscounted sum of utilities is not guaranteed to be finite
and to converge if [12].

III. REAL-TIME DP SOLUTION

A. Layered Synchronous DP Solution

The optimal cross-layer policy for video transmission formu-
lated as an MDP in Section II can be found using centralized
dynamic programming methods (e.g., value iteration, policy it-
eration, etc. [12]) to maximize the discounted long-term utility
that can be received starting from any state

(4)

However, such centralized methods require layers to share
information about their states, actions, utilities, and dynamics,
which not only violates the layered network architecture, but
also leads to large message exchange overhead. To adhere to
the current layered network architecture, we propose a layered
decomposition of the DP operator (4) similar to [6], to allow
each layer to update its own external and internal policies
independently, according to the information exchanged with
other layers. For the streaming application, the decomposition
is shown in Appendix B, where we further prove its equivalence
to the centralized approach. In the rest of this paper, this layered
optimization method is referred to as layered synchronous
dynamic programming (LSDP), since the state-value functions
of all states are updated synchronously within each round of its
iterations.

The operation and message exchange of LSDP within each
time slot is summarized in Fig. 2.

B. Why Is a Real-Time Solution Needed

LSDP provides a systematic way to solve the cross-layer op-
timization problem and guarantees an optimal solution. It itera-
tively optimizes APP’s scheduling policy and PHY’s transmis-
sion policy off-line, that is, the optimal cross-layer transmission
policy is obtained before the real data is transmitted. This fea-
ture introduces additional latency which may not suitable for the
real-time video transmission. Furthermore, in real-time video
transmission system, the experienced environments are often
changed drastically over time which cannot be characterized a

Fig. 2. The operation and message exchange in LSDP.

priori and, hence, impedes the implementation of LSDP. The
disadvantages of LSDP are summarized below.

First, LSDP requires perfect knowledge of the environment
as well as the response of the considered video transmission
system to environmental changes. In our problem, this knowl-
edge includes the transition probability of both the video traffic
at the APP layer and the wireless channel condition at PHY
layer. In real-time video transmission systems, it is often dif-
ficult to obtain this knowledge because: i) it is costly to build up
the transition probability profile sequence, e.g., using repeated
training or Monte Carlo simulations [8]; ii) different video se-
quence characteristics (e.g., high motion and low motion) will
lead to different statistical properties and, hence, the statistic
model learned from one video sequence cannot be applied to
another sequence [8].

Second, the complexity of the offline computation is
. In video

transmission, the cardinality of is large, usually domi-
nant to all the other terms, which will result in long operation
latency.

Finally and most importantly, LSDP cannot adapt its cross-
layer transmission policy on-the-fly to the system and environ-
ment dynamics, which is important for delay-sensitive applica-
tions. In real-time video transmission, any part of the system and
the environment may vary over time (e.g., the source traffic, the
wireless channel condition, the end user’s experience and inter-
action). As LSDP is run off-line, the knowledge its computa-
tion relies on (i.e., the utility profile, the statistic model for the
system) is stationary, which is often not true in practice. The
performance of LSDP will severely degrade whenever the envi-
ronment model is inaccurate.

C. Why is a Real-Time Solution Needed

To overcome the shortcomings of LSDP, we propose a novel
LRTDP method, which is performed on-line in order to adapt
the cross-layer transmission strategies to the unknown dynamics
in both the source traffic and experienced wireless channel. In
LRTDP, each layer learns from its own experience with on-line
estimation and cooperatively adapts to the system dynamics
to maximize the user’s utility in a time-varying environment.
The on-line adaptation makes LRTDP more realistic to be
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Fig. 3. The system diagram of our streaming system.

implemented in cross-layer optimization of delay-sensitive
video streaming applications, such that the delay constrained
data can be delivered in time.

The key idea of LRTDP is to incrementally improve the op-
timal scheduling and transmission policies on-line during the
data transmission. This is implemented by intertwining the pro-
cesses of on-line estimation, policy update, and decision making
together. The complete system diagram of LRTDP is shown in
Fig. 3, in which the yellow parts are the modules on video data
path, the gray parts are on-line estimation modules, the white
parts are QoS computation modules, the blue parts are policy
update modules, and the green parts are decision making and
control modules. The working procedure of LRTDP is summa-
rized in Table V and its specific details are summarized in the
following sections.

1) On-Line Estimation: The first operation within time slot
is to update the user’s knowledge about system dynamics using
the observation history. In the transmission process, it is easy
to learn the structure of the instant utility received by the user
through some training video sequence, and therefore we only
need to estimate on the state transition probabilities which cap-
ture the system dynamics. We use system identification methods
which are usually referred to as “indirect methods” as compared
to “direct methods” like reinforcement learning [13].

In our considered cross-layer problem, there are three cat-
egories of unknown distributions which influence the state
transition probability: the transition probability of the incoming
video traffic , the distribution on the number of
incoming packets , and the channel transition probability

. These distributions have different
expressions, but the rules of updating them are identical.
Hence, we use uniform variables and to denote the state and
action, and as the distribution. At the beginning of
the streaming process, there is zero knowledge about
and hence, the distribution is initialized to be uniform as

where is the cardinality of the set .
As the process evolves, the state-visiting history accumulates
and we can approximate the state transition probability based

on the visiting history. Let denote the number of visits
to state with action performed up to time slot , and

be the number of subsequent transition to state ,
then the one-step transition probability is updated as

(5)

The law of large numbers ensures that the estimation
converges to the true value as long as the state space is
communicating (i.e., each state can be accessed from any other
state through a finite path) and the whole streaming process is
ergodic. In the later part, we will show that the convergence of
the transition probability estimation is a sufficient condition of
LRTDP’s convergence.

2) Policy Update: In [12], the partial ordering over different
policies in an MDP has been defined through the state-value
function as

(6)

It has been further shown in [12] that there is always at least
one optimal policy that is better or equal to all other policies.
The state-value function corresponding to the optimal policy is
called the optimal state-value function, denoted as . It is
easy to show that is unique and any policy which achieves

is the optimal policy. Therefore, once the state-value
function converges to , the policy corresponding to

also approaches to one of the optimal policies.
Similar to the state transition probability, the wireless user

has no knowledge about and must update it on-line, during
the streaming process. Let and de-
note the system state and the corresponding latest estimate of
state-value function at time slot , respectively, LRTDP also uses
the idea of value iteration to optimize by solving the opti-
mization problem

(7)

It should be noticed that LRTDP only has the estimate of tran-
sition probability and, hence, should be replaced by

during implementation. Using the same decompo-
sition rule as in (29) and (30), LRTDP also decomposes (7)
and distributes the optimization task to all layers, as shown in
Table I. The operation of the policy update in LRTDP within
one time slot (i.e., starting from time and ending at time )
is as follows, which is also shown in Fig. 3:
Step 1. PHY computes its QoS set (i.e., the set

of possible QoS which it can provide to the upper
layers) as in Section II-A based on its current state

and its internal action set, then transmits it
upwards to MAC.

Step 2. MAC computes its QoS set as (24),
and further forwards it to APP.
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TABLE I
THE SUBVALUE FUNCTION (I.E., DP OPERATOR) AT EACH LAYER IN LRTDP

Step 3. As PHY’s action has not been determined
yet, APP has to update its PHY-dependent policy

, which is defined as
,

using Bellman-backup operations [12] for every
possible , where
is the policy assuming that is executed at
PHY at this time slot, and the subvalue function

is the corresponding
expected long-term utility.

Step 4. APP transmits the maximized subvalue function
set , similarly defined
as ,
downwards to MAC. Since there is no opti-
mization taking place at MAC, it further passes

to PHY.
Step 5. PHY optimizes its subvalue function

, and PHY’s policy

is updated.
Step 6. The state-value function of is updated as

.
Step 7. PHY acknowledges its updated policy

to APP, and APP up-
dates its policy for the current state as

(8)

3) Decision Making: The final step in LRTDP is to control
the streaming process by applying the transmission and sched-
uling actions and according to the latest
policy, i.e., decision making.

An intuitive way of decision making is to use the greedy
strategy, i.e., the user always chooses actions stored in the
current policy, which maximize the expected utility starting
from . However, such a greedy strategy for external actions is
prone to generating loops on the state-visiting path during the
streaming process, i.e., some system states are visited frequently
while some other states are not visited at all. As we will show in
the next section, it is necessary for every state in the state space
to be visited in order to ensure the convergence of the policy
updates. Hence, for QoS (i.e., internal actions) , we al-
ways use the greedy strategy to maximize the long-term utility;

yet, for the external action , we choose the
greedy action with a probability of , and leave a small
probability for the remaining actions to be randomly
picked up. Such a strategy is called an -greedy policy. In the
following section, we will show that it is necessary for the user
to take such a small probability to explore other external actions
rather than solely utilizing the greedy one.

The decision making of LRTDP is performed as follows (its
processing and information flow can be found in Fig. 3:
Step 1. PHY selects its action using the -greedy

strategy. With probability
, it selects the greedy action

as ; with probability
, it selects a random action other-

wise. represents the number of
visits to until time slot , and is a
small value called the exploration factor.

Step 2. According to , APP selects the
greedy QoS , and
uses the -greedy strategy to select the external ac-
tion .

Step 3. APP delivers downwards to MAC and PHY
for them selecting their corresponding internal ac-
tions and .

4) Complexity and Interlayer Message Exchange: In this
section, we discuss the computation complexity and mes-
sage exchange of LSDP and LRTDP. In order to evaluate
the complexity of LSDP, we must first look at the com-
plexity of subvalue iteration at each layer. For a fixed state

, the subvalue iteration at APP defined in (41)
has complexity , which equals
to , and the subvalue it-
eration at PHY defined in (40) has complexity .
Hence, the total complexity of one iteration (i.e., sweeping
the whole state space once) of LSDP can be expressed as

.
For LRTDP, as the policy update is time slotted, we

consider the complexity within one time slot, which is
referred to as one round of iteration here as well. Sim-
ilar to LSDP, the complexity of one round in LRTDP is

. The major difference be-
tween the complexity of LSDP and LRTDP is the size of APP
state space , which depends on the chosen encoding
parameters, but which is usually larger than for video
application when we consider the prioritized classification of
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Fig. 4. The performance comparison between LSDP and LRTDP.

video data as in Appendix A. However, the number of iterations
which LRTDP takes to achieve a similar performance as LSDP
are relatively few. Fig. 4 compares the performances of LSDP
and LRTDP with the same discounted factor . From this
figure, we note that after around 400 time slots (indicated by
the circle), i.e., 800 ms as the length of one time slot
ms, LRTDP catches up with the performance of LSDP (i.e.,
the relative difference is less than 10%). This means that, to
obtain a similar performance, LRTDP only requires to visit in
the order of states, while LSDP requires in the order of

states, which will lead to significant differences among the
algorithms in their run-time performance.

In terms of message exchange, LSDP requires to report
the QoS of PHY and MAC to the upper layers, which has a
communication cost of . The downward
transmission of subvalue functions takes a communication cost
of . Hence, the total communication cost of one
iteration of LSDP is roughly . Similar to
the computation complexity, LRTDP also requires significantly
fewer inter-layer message exchanges to achieve a performance
close to LSDP.

5) The Convergence Analysis of LRTDP: In this section, we
prove that LRTDP converges to the optimal policy at each layer.

First, we prove that the state-value function converges to
the optimum in LRTDP. Proposition 1 shows that, if the state
transition probability is known, then the subvalue function at
each layer converges to their optimum if -greedy exploration
strategy is applied. Afterwards, we extend this conclusion in
Proposition 2 showing that when the state transition probability
is unknown, the convergence results of Proposition 1 still hold
for the LRTDP’s on-line estimation. Subsequently, we finalize
our analysis in Proposition 3 showing that the policy generated
by LRTDP converges to the optimum at each layer as well.

Proposition 1: With state transition probability known,
LRTDP converges to the optimal state-value function with
-greedy exploration strategy as long as the state space is

finite and communicating. The optimal state-value function is
unique and satisfies the following Bellman’s equations:

(9)

Proof: The proof can be found in Appendix C.
Proposition 1 proves the convergence of LRTDP under the

assumption that the state transition probability is known. This
proposition can be further extended to the case in which the
state transition probability is unknown but can be estimated as
in Section III-C-1). This extension is presented next.

Proposition 2: With indirect on-line estimation, the
state-value function converges to the optimal state-value
function when the transition probabilities are unknown.

Proof: The proof can be found in Appendix D.
With state-value function converging, it is straightfor-

ward to show the convergence of LRTDP’s policy.
Proposition 3: LRTDP’s policy converges to the optimum at

each layer.
Proof: Proposition 1 and 2 have shown that LRTDP con-

verges to the optimal state-value function with on-line
estimation and -greedy exploration strategy, i.e.

(10)

(11)

Since the policy is generated as

(12)

(13)

their value at the time limit are

(14)

(15)
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TABLE II
EXPERIMENT PARAMETERS

Notice that APP’s policy is a composite mapping from PHY’s
policy and APP’s PHY-dependent policy, i.e.

(16)

We further have the convergence of APP’s policy as
. There-

fore, we have proved the convergence of LRTDP’s policy at
both PHY and APP layers.

IV. NUMERICAL RESULTS

A. Experiment Settings

In this section, we test the performance of the proposed
LRTDP method using the illustrative example described in
Appendix A, and compare it with the conventional LSDP
method described in Appendix B. The video sequence
“Foreman” with length of 50 s (CIF resolution, 50 Hz
frame-rate) is compressed by an H.264/AVC codec [27]
with target bit rate of 1.5 Mbit/s. At PHY, we consider the
802.11a standard, it has 8 operation modes (the specification
of different 802.11 modes can be found in Table V), with the
symbol rate varies from 333 to 500 KBd/s. Convolutional
codes are employed to perform forward error correction (FEC).
Table II summarizes the parameters used at each layer.

B. Experiment Results

1) LRTDP vs. Alternative Methods: In this experiment, we
compared LRTDP with alternative cross-layer methods.

First, we show that our LRTDP algorithm approaches the op-
timal performance obtained by LSDP. We use the average utility
as the performance metric, which is the average one-step utility
received by the user during the period starting from the begin-
ning of streaming to the current moment, i.e.,

(17)

Fig. 5 shows the average utilities obtained by LSDP and
LRTDP, with the resulting average PSNR also listed in the
legend. LSDP first computes the optimal cross-layer trans-
mission policy off-line, and subsequently applies it for the

Fig. 5. Average utility obtained using LSDP and LRTDP.

real-time video transmission. If we assume that LSDP has full
knowledge of the system dynamics, this policy results in the
optimal performance. Therefore, the performance of LSDP
can be served as the upper bound of LRTDP’s performance.
While implementing LRTDP, there is no a priori knowledge
assumed about the system dynamics and the wireless user
needs to learn these on-line. This explains why the transient
performance of LRTDP falls behind LSDP at the beginning
of the streaming process. However, LRTDP’s on-line learning
gradually accumulates its knowledge about system dynamics,
and its performance (e.g., LRTDP with and )
approaches that of LSDP.

Fig. 6 then compares the average utilities achieved by
LRTDP and the approach with only APP layer adaptation [40].
From this figure, we can observe that, over time, the layered
RTDP algorithm achieves an average reward of 1.6002 and an
average PSNR of 36.1766 dB, while the APP layer adaptation
achieves an average reward of 1.3127 and an average PSNR of
34.1743 dB. It shows that the cross-layer optimization improves
the system performance by jointly scheduling the actions at
different layers, e.g., the adaptation of MAC and PHY’s actions
to the video traffic condition.

Next, we analyze the effect of the foresighted optimization.
Fig. 7 shows the average utilities obtained by LRTDP with my-
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TABLE III
THE IMPACT OF DISCOUNT FACTOR �� � ����

Fig. 6. Average utility obtained using foresighted and myopic LRTDP.

Fig. 7. Average utility obtained using centralized and layered RTDP.

opic optimization (i.e., ) [39] and foresighted optimization
. The foresighted LRTDP achieves an average utility

of 1.6002 and an average PSNR of 36.1766 dB, while the my-
opic LRTDP only achieves an average utility of 1.1222 and an
average PSNR of 32.7345 dB. A more detailed discussion about
the effect of discount factor can be found in the next subsec-
tion.

2) The Impact of Discount and Exploration Factors: In this
section, we further consider the impact of the exploration factor

and the discount factor on LRTDP’s performance. From
Fig. 5, we notice that LRTDP with a smaller exploration factor
and larger discount factor performs better. This is expected,
since a smaller exploration factor leads to less exploration and
hence, LRTDP can focus on the greedy action which has more
immediate effect in increasing the user’s utility, and a larger
discount factor gives LRTDP more foresight when updating its
policy, thereby improving the average utility in the long-term.
However, the following discussion shows that the above intu-
ition on and does not always hold.

The discount factor determines the level of “foresight” in
making control decisions for the streaming process and hence,
it has remarkable influence over the system performance.
Table III. summarizes the impact of the discount factor on the
average utility achieved in transmitting a 50-s “Foreman” se-
quence with exploration factor . An increase on does
not necessarily lead to an improvement on the average utility
as in [17]. A larger discount factor leads to more foresight
when making transmission decisions, and therefore improves
LRTDP’s performance when the policy has reached the op-
timum, but such an improvement is achieved at the expense
of slowing down LRTDP’s convergence speed to the optimal
policy. As a result, a larger does not necessarily perform
better than a smaller , if we consider the results obtained
for only a finite period of time, before the policy arrives at its
optimum.

A similar argument exists for the exploration factor . It is
well known that the policy update of different states in dynamic
programming is unbalanced under the greedy exploration
strategy [13], which means that, during the streaming process,
there are some states which will be visited more frequently
than others because the expected utility will be maximized in
this way. For example, under heavy video traffic conditions,
PHY usually has the tendency to raise its transmission power
in order to reach a higher SNR state; on the contrary, under
light video traffic conditions, PHY will reduce its transmission
power to save energy. Therefore, has a similar impact as
in balancing the user’s long-term and short-term benefit when
making transmission decisions, as shown in Table IV. Starting
from the extreme case when and there is no exploration,
the average utility and PSNR received by LRTDP increase
along with , as exploring different actions other than the
greedy one helps the user to visit more states, which thereby
helps to accelerate the policy’s convergence to optimum. Nev-
ertheless, when further increases, the decision making of
LRTDP gradually changes from “greedy” (i.e., focusing only
on the greedy actions and thus a small set of states) to “random”
(i.e. trying different actions and thus visiting and updating a
larger set of states simultaneously). These can be considered
as two different paths leading to the same optimal policy when
time goes to infinity. Given a finite streaming duration, the
“random” path with a too large exploration factor will affect
the received average utility in a negative manner. Therefore,
the values of and should be carefully selected and adjusted
for real applications, which is affected by the experienced
environmental dynamics.

3) The Impact of Model Inaccuracy: Since one of the biggest
differences between LSDP and LRTDP is the requirement on the
a priori knowledge about the system dynamics, here we analyze
how the performances of these methods change when the state
transition probability is not accurately known. To get a better
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TABLE IV
THE IMPACT OF EXPLORATION FACTOR �� � ����

Fig. 8. The average performances along with noise variance �� � ���� � �
����.

observation on the impact of each layer, we analyze the two
sets of state transition probabilities, and separately.

can be represented by an matrix, where is the
number of priority classes and each entry stores the
transition probability of incoming traffic from frame type to
frame type . In this experiment, we add to an
Gaussian noise matrix , with variance , that is

(18)

is a matrix in our ex-
ample, represents the transition probability from
channel state to state , when the power allocation is ex-
ecuted. Thus, we add a Gaussian noise matrix with the
same size to it, with variance

(19)

Fig. 9. (a) The influence of � inaccuracy �� � ����. (b) The influence
of � inaccuracy �� � ����.

The performances of LSDP and LRTDP with such inaccurate
state transition probability are shown in Fig. 8. In both cases,
LSDP is most severely influenced with a remarkable drop in
both average utility and PSNR. Fig. 9 illustrates how the average
performances (measured in average utility as well as PSNR)
of both methods vary along with the level of model inaccu-
racy. Consistent with our intuition, the performance of LRTDP
outperforms LSDP when the noise variance keeps increasing.
Therefore, in situations where little knowledge of the system dy-
namics can be obtained, LRTDP is a better solution than LSDP
since its performance is more robust and less dependent to the
a priori knowledge.

V. CONCLUSION

In this paper, we considered the cross-layer optimization
of the real-time video transmission of an individual user over
a single wireless link, where the environment dynamics are
time-varying and unknown to the wireless user. We formulated
the cross-layer optimization into a layered Markov decision
process, and proposed a novel layered real-time dynamic
programming method to adapt the cross-layer transmission
strategies to the experienced dynamic environment (including
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the source dynamics and channel dynamics) which is proved to
converge to the optimal policy. The advantages of this approach
are as follows: i) it adheres to the OSI structure, with only
limited information exchanges among layers; ii) compared
to the conventional methods, it has much lower computation
complexities and message exchange overheads; iii) more im-
portantly, this method learns about system dynamics on-line,
and has no a priori knowledge requirement. In the subsequent
experiments, we further showed that this method is more
robust than the conventional cross-layer optimization methods
with complete knowledge in a nonstationary and time-varying
wireless environment.

APPENDIX A
AN ILLUSTRATIVE VIDEO STREAMING EXAMPLE

In this section, we provide an illustrative example of states,
actions, QoS, state transition probabilities, and system utility
functions within the system model for video streaming estab-
lished in Section II.

A. PHY Layer

1) PHY State and State Transition: We assume that the
received signal envelope has a Rayleigh distribution with
additive Gaussian noise in a typical multipath propagation
environment, the received instantaneous SNR is distributed
exponentially with the probability density function

[9], where is the
average SNR and is determined by the power allocation.

is represented by within each time slot. Due to the
continuity of , the cardinality of PHY’s state space is
infinite. Hence, we have to quantize the continuous SNR value
to make the state space finite. Let be
the received SNR thresholds in increasing order with
and , the total SNR space can be partitioned into
intervals. We assume a quantization function which maps
the received SNR into one of discrete values, i.e.,

, where
is the representative SNR of the interval .

As we already assumed that the SNR remains constant within
one time slot, the one-step state transition at PHY happens only
on the boundary of two successive time slots, and is restricted
from a given state to its two adjacent states. It can be approxi-
mated as in [9]

(20)

where is the transmission time for one packet, is the
level crossing rate of SNR level for the SNR process, and is
expressed as

(21)

TABLE V
POSSIBLE 802.11A OPERATION MODES

where is the maximum Doppler frequency. The steady-state
probability of each state equals

(22)

2) PHY QoS: In this example, we consider transmission over
the 802.11a standard, which can offer bit rates up to 54 Mb/s
and is suitable for real-time video transmission over WLAN.
The available modulation and coding schemes in 802.11a are
given in Table V. The technical details of different modes in
802.11a (net rate, gross rate, code rate, efficiency, etc.) can be
found in [34].

Therefore, the selection of modulation and channel coding
scheme, i.e., is equivalent to selecting among the pos-
sible 802.11a PHY modes. The transmission rate is
defined as the effective rate which depends on both the mod-
ulation level and channel coding rate with specified values
available in [34].

The packet loss rate can be approximated using
the sigmoid function as in [10] and [41]:

, where and are empirical con-
stants determined by the modulation scheme, channel coding,
and packet length , which is assumed up to 1000 bytes in this
paper [10].

Thus, the effective data rate within each time slot is
, which represents the actual number of

packets to be transmitted within one time slot, or in other words,
the goodput at the PHY layer.

The internal cost of transmitting one packet is defined
as the energy-rate function [11]: ,
where denotes thermal noise and is the channel gain.

B. MAC Layer

As we used a simplified MAC model, only the internal action
needs to be specified. Here we assume

, where is the maximum retransmission
limit.

Together with the QoS provided by the PHY layer,
and determines the QoS provided for the
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TABLE VI
THE WORKING PROCEDURE OF LRTDP

APP layer, as in [6] (as is constant, we neglect it in the
expression of )

(23)

C. APP Layer

Similar to [2] and [7], we partition the incoming encoded
video packets into different priority classes and adjust
the transmission strategies accordingly for each class. This
approach can significantly improve the overall received video
quality. The set of priority classes depends on the specific
video encoder used at APP. For example, in DCT-based video
codecs (e.g., H.264/AVC), video streams are typically com-
pressed into three classes of frames [Intra (I), Predictive (P),
and Bidirectionally predictive (B), i.e., ]. In this paper,
we further consider the interdependency between packets,
which can be captured by the Directed Acyclic Graph (DAG),
when performing packet prioritization. In addition, we assume
that each frame has an activity level taking value from the set

[8] in order to capture the variation in
activity level (e.g., motion) between scenes.

Fig. 10. The DAG of a GOP (IBBPBBP).

To simplify our analysis, we assume that the maximum GOP
length is bounded by . Fig. 10 shows the direct acyclic graph
(DAG) of a group of (IBBPBBP) frames, which reflects the in-
terdependency between frames typical of an encoding by a stan-
dard video coder (e.g., H.264/AVC). In the DAG, each leaf node
is considered as a priority class and hence there are 7 priority
classes in this GOP. We further define the depth of any class to
be its maximum distance to the DAG’s root. For example, the
depth of the first P frame (P1 for short) in this GOP is 1 and the
depth of the fourth B frame (B4 for short) is 4.

Thereby, we can formally assume that a packet from class
can be characterized by the

following parameters in our priority classification model:
1) The distortion impact depends on the underlying video

characteristics, encoding parameters, etc. It reflects the im-
portance of the packet in terms of quality contribution.
Here we assume an additive distortion reduction [15], and
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represents the distortion reduction when a packet is re-
ceived and successfully decoded at the decoder’s side [see
(24)–(26), shown at the bottom of the page].

2) The packet lifetime length , which is an integer number
with the actual life time to be seconds.
The depth as defined earlier.

Moreover, the number of packets generated by one frame
of class is modeled as a random variable with mean

, whose probability mass function is assumed to be only
depended on the class type but independent of time [8]. With
this traffic model, packets from different GOPs and belonging
to the same priority group are treated similarly and the total
number of priority classes is , where 3 is the number
of activity levels.

As is assumed to be much smaller than the frame interval,
it is straightforward that the incoming traffic within an indi-
vidual time slot belongs to the same priority class. The traffic
state can be represented as , where is the pri-
ority class that incoming packets belongs to and is the number
of incoming packets. It has been shown in [8] that the transi-
tion probability only depends on the specific GOP
structure and video content.

With the incoming traffic differentiated in different
priority classes, the buffer occupancy is represented as

, where ,
and represents the number of packets from
priority class who have a remaining lifetime of time slots,
and is the largest packet lifetime.

The packet scheduling at APP is defined as
, where are the num-

bers of packets to be transmitted who have a remaining lifetime
of time slots.

The update of over one time slot is simply performed by
deleting the transmitted packets and expired packets, and adding
the new incoming packets as follows:

(27)

and denotes the buffer change during time
slot and is computed as

(28)

where denotes the number of incoming
packets within time slot . The buffer state transition probability
is computed as

(29)

The received video quality of APP is computed as
, which is

the distortion reduction contributed by the successfully trans-
mitted and decoded packets.

APPENDIX B
DECOMPOSITION OF DP OPERATOR

In this Appendix, we decompose our DP operator into sub-
value functions which can be updated locally at each layer. Note
that MAC only has internal action , which can be opti-
mized at APP through the selection on , therefore we do
not consider the optimization at MAC explicitly.

The DP operator in (4) can be rewritten as (24).
Instead of finding the optimal external actions and internal

actions (e.g., the QoS level) simultaneously, we can decompose
(24) into a two-loop optimization, as in (25) and (26)

(30)

(24)

(25)

(26)
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(31)

(32)

Equation (26) only includes the selection of APP’s action and
QoS and, hence, is the subvalue function updated locally at APP,
which can be taken as the inner loop of the whole optimiza-
tion process. When for all

is updated, its value is reported to PHY, where subvalue
function (25) is updated as the outer loop of optimization. In this
order, the DP operator in (24) is updated once.

In the following part, we prove the update in (25) and (26) is
equivalent to that in (24). To make the proof more clear, we use
several shorthand notations as (30), (31), and (32).

Obviously, equals to (24) which is the re-
sult for centralized optimization, and equals
to (25) and (26) for layered optimization.

According to the property of optimization, we have

(33)

Assuming that is the solution for (31),
that is

(34)

It is easy to tell that

(35)

According to the definition of , we further
have

(36)

and, hence

(37)

Putting (33) and (37) together, we get our conclusion that

(38)

In the layered optimization defined by (25) and (26), APP
needs to know the transition probability of PHY’s states to up-
date its policy, which is usually protocol-dependent and violates
the current network structure. Therefore, a further improvement
was made in [6] such that each layer does not need the transition
probability of lower layers to update its policy, and the updates
on both layers are correspondingly changed as (39) and (40),
shown at the bottom of the page.

It has been shown in [6] that the update rules in (25) and (26)
and in (39) and (40) provide close performances in cross-layer
optimization, while the latter one consumes much less informa-
tion exchange. Therefore, we use (39) and (40) as the update
rule for LSDP in the following discussion of this paper.

APPENDIX C
PROOF OF PROPOSITION 1

To prove Proposition 1, we need the following two lemmas:
Lemma 1 guarantees that every state in the state space is visited
infinitely often with our -greedy strategy; Lemma 2 proves the
convergence of asynchronously updated sequences.

Lemma 1 (Extended Borel-Cantelli Lemma): Let be
any process, and is a process adapting to , that is,

. Then almost surely

(41)

Proof: The proof can be found in [20].
Definition 1: Define a sequence of nonempty sets

with

(42)

PHY:

(39)

APP:

(40)
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which satisfies the following two conditions:
a) (a) (Synchronous Convergence Condition) For any

, a function maps it into , that is,
and .

b) (Box Condition) If can be decomposed as
, then for every , there

exists sets such that

Lemma 2: (Asynchronous Convergence Theorem [14]) If the
Synchronous Convergence and Box Conditions hold for the se-
quence of nonempty sets , and the initial solution esti-
mate belongs to the set , then
every limit point of is a fixed point of the function as
in Definition 1.

Proof: The proof can be found in [14].
Proof of Proposition 1: We first show that every state

is visited infinite times with -greedy strategy.
Let the probability of any action being chosen

at the time slot be denoted by .
If a state is visited infinitely often, the total
probability of being chosen from
amounts to

(43)

where represents the time slot when is visited for the
th time.

Let denote the observation at time
slot and , it is obvious that

is adapting to the history of , which makes Lemma
1 applicable here. Together with (43), we draw the conclusion
that action is executed infinitely often from state

.
Now let be the set of states in the state space which

are being visited infinitely often. is obviously not an
empty set. Assuming there is a state ,
and with the assumption of a communicating state space,
there exists a state-action pair ,
which leads to with a positive probability

. Similar

to (43), the total probability of being visited
following every visit to is

(44)

Again, Lemma 1 yields the conclusion that is
also visited infinitely often. As is communicating, the above
argument can be extended to the whole state space, and finally
we know that all states are visited infinitely often with -greedy
strategy.

In the next step, we prove that the state-value function update
in LRTDP is a contraction mapping.

For any state , rewrite the mappings at
different layers in (45) and (46), shown at the bottom of the page.

It is easy to verify that for any two different value functions
and as in (47) and (48), shown at the top of the next page,

where is the maximum norm and is the all-one vector
. Similarly, we also have

(49)

Therefore

(50)

As (50) holds for any , we have the following contraction
condition:

(51)

Similarly, it can be shown that

(52)

The contraction property at both layers guarantees the fol-
lowing iteration is a contraction mapping for both and

(53)

For , the mapping equals to
, which is defined as ; for

, the mapping equals to .

(45)

(46)
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(47)

(48)

Therefore, both and converge under the synchronous
update defined by (25) and (26). According to Lemma 2, since
we guaranteed infinite visits to all states, then the asynchronous
update as in Table I also converge to the fixed point (i.e., the
optimum).

APPENDIX D
PROOF OF PROPOSITION 2

Proof of Proposition 2: Let and de-
notes the optimal subvalue functions based on the esti-
mates of transition probabilities and

in time slot . It is easy to tell that

and . For any
small , assume for ; and

for .
Similar to the definition in Proposition 1, let denote the

time that is visited for the th time after , then we first
prove that the following inequality holds for any state :

(54)

We use induction to prove it in (48).
Therefore, since is bounded,

, for any small .

Finally, as , we can draw our conclu-
sion that

(55)

Similar result can be obtained for .

REFERENCES

[1] M. van der Schaar and S. Shankar, “Cross-layer wireless multimedia
transmission: Challenges, principles, and new paradigms,” IEEE Wire-
less Commun. Mag., vol. 12, no. 4, Aug. 2005.

[2] Multimedia Over IP and Wireless Networks: Compression, Net-
working, and Systems, M. van der Schaar and P. Chou, Eds. New
York: Academic, 2007.

[3] Q. Liu, S. Zhou, and G. B. Giannakis, “Cross-layer combing of adaptive
modulation and coding with truncated ARQ over wireless links,” IEEE
Trans. Wireless Commun., vol. 3, no. 5, pp. 1746–1755, May 2005.

[4] Y. J. Chang, F. T. Chien, and C. C. Kuo, “Cross-layer QoS analysis
of opportunistic OFDM-TDMA and OFDMA networks,” IEEE J. Sel.
Areas Commun., vol. 25, no. 4, pp. 657–666, May 2007.

[5] M. van der Schaar, Y. Andreopoulos, and Z. Hu, “Optimized scal-
able video streaming over IEEE 802.11 a/e HCCA wireless networks
under delay constraints,” IEEE Trans. Mobile Comput., vol. 5, no. 6,
pp. 755–768, Jun. 2006.

[6] F. Fu and M. van der Schaar, “A new systematic framework for au-
tonomous cross-layer optimization,” IEEE Trans. Veh. Technol., vol.
58, no. 4, pp. 1887–1903, Apr. 2009.

[7] A. Albanese and M. Luby, “PET-priority encoding transmission,” in
High-Speed Networking for Multimedia Application. Boston, MA:
Kluwer, 1996.

[8] D. S. Turaga and T. Chen, “Hierarchical modeling of variable bit rate
video sources,” in Proc. 11th Packet Video Workshop, 2001.

[9] Q. Zhang and S. A. Kassam, “Finite-state Markov model for Rayleigh
fading channels,” IEEE Trans. Commun., vol. 47, no. 11, Nov. 1999.

[10] D. Krishnaswamy, “Network-assisted link adaptation with power con-
trol and channel reassignment in wireless networks,” in Proc. 3G Wire-
less Conf., 2002, pp. 165–170.

[11] W. Chen, U. Mitra, and M. J. Neely, “Energy-efficient scheduling with
individual packet delay constraints over a fading channel,” in Wireless
Networks. New York: Springer, 2008.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

[13] A. G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to act using real-
time dynamic programming,” in Artificial Intelligence. New York:
Elsevier, 1995.

[14] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Com-
putation: Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall,
1989.

[15] P. Chou and Z. Miao, “Rate-distortion optimized streaming of packe-
tized media,” IEEE Trans. Multimedia, vol. 8, no. 2, pp. 390–404, Apr.
2006.

[16] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvari, “Convergence
results for single-step on-policy reinforcement-learning algorithms,” in
Machine Learning. New York: Springer, 2000.

[17] N. Mastronarde and M. van der Schaar, “Towards a general framework
for cross-layer decision making in multimedia systems,” IEEE Trans.
Circuits Syst. Video Technol., to be published.

[18] IEEE 802.11e/D5.0, Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications: Medium Access Control (MAC)
Enhancements for Quality of Service (QoS) Jun. 2003, draft supple-
ment, 802.11e/D5.0.



3124 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 6, JUNE 2010

[19] C. Curescu and S. Nadjm-Tehrani, “Time-aware utility-based resource
allocation in wireless networks,” IEEE Trans. Parallel Distrib., vol. 16,
no. 7, pp. 624–636, May 2005.

[20] L. Breiman, “Probability, classic in applied mathematics,” Soc. Indust.
Appl. Math., 1992.

[21] A. J. Goldsmith and S. G. Chua, “Adaptive coded modulation for fading
channels,” IEEE Commun. Mag., vol. 46, pp. 595–602, May 2007.

[22] Y. J. Chang, F. T. Chien, and C. C. Kuo, “Cross-layer QoS analysis
of opportunistic OFDM-TDMA and OFDMA networks,” IEEE J. Sel.
Areas Commun., vol. 25, no. 4, pp. 657–666, May 2007.

[23] V. Srivastava and M. Motani, “Cross-layer design: A survey and the
road ahead,” IEEE Commun. Mag., vol. 43, no. 12, pp. 112–119, Dec.
2005.

[24] R. Hamzaoui, V. Stankovic, and Z. Xiong, “Optimized error protection
of scalable image bit streams,” IEEE Signal Process. Mag., vol. 22, no.
6, pp. 91–107, Nov. 2005.

[25] F. Zhai, Y. Eisenberg, and A. K. Katsaggelos, “Joint source-channel
coding for video communications,” in Handbook of Image and Video
Processing, 2nd ed. New York: Elsevier, 2000.

[26] D. V. Djonin and V. Krishnamurthy, “Q-Learning algorithms for con-
strained Markov decision processes with randomized monotone poli-
cies: Application to MIMO transmission control,” IEEE Trans. Signal
Process., pp. 2170–2181, 2007.

[27] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[28] T. Stockhammer and M. Bystrom, “H.264/AVC data partitioning
for mobile video communication,” in Proc. IEEE Int. Conf. Image
Process., Singapore, Oct. 2004, pp. 545–548.

[29] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge ,
U.K.: Cambridge Univ. Press, 2004.

[30] T. Holliday, A. Goldsmith, and P. Glynn, “Optimal power control and
source-channel coding for delay constrained traffic over wireless chan-
nels,” in Proc. IEEE Int. Conf. Commun., May 2002, pp. 831–835.

[31] P. Sadeghi, R. Kennedy, P. Rapajic, and R. Shams, “Finite-state
Markov modeling of fading channels,” IEEE Signal Process. Mag.,
vol. 25, no. 5, pp. 57–80, Sep. 2008.

[32] X. Wang, Q. Liu, and G. B. Giannakis, “Analyzing and optimizing
adaptive modulation coding jointly with ARQ for QoS-guaranteed
traffic,” IEEE Trans. Veh. Technol., vol. 56, no. 2, Mar. 2007.

[33] Y. J. Chang, F. T. Chien, and C. C. Kuo, “Cross-layer QoS analysis of
opportunistic OFDM-TDMA and OFDMA networks,” IEEE J. Select.
Areas Commun., vol. 25, no. 4, pp. 657–666, May 2007.

[34] High-Speed Physical Layer in the 5 GHz Band, IEEE Std., 802.11a-
1999, 1999.

[35] V. Kawadia and P. R. Kumar, “Principles and protocols for power con-
trol in wireless ad hoc networks,” IEEE J. Sel. Areas Commun., vol. 23,
no. 1, Jan. 2005.

[36] D. Djonin and V. Krishnamurthy, “MIMO transmission control in
fading channels—A constrained Markov decision process formulation
with monotone randomized policies,” IEEE Trans. Signal Process.,
vol. 55, no. 10, pp. 5069–5083, Oct. 2007.

[37] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network ar-
chitectures,” Proc. IEEE, vol. 95, no. 1, pp. 255–312, Jan. 2007.

[38] J. W. Lee, R. R. Mazumdar, and N. B. Shroff, “Non-convex optimiza-
tion and rate control for multi-class services in the internet,” IEEE/ACM
Trans. Netw., vol. 13, no. 4, pp. 827–840, Aug. 2005.

[39] E. Maani, P. Pahalawatta, R. Berry, T. N. Pappas, and A. K.
Katsaggelos, “Resource allocation for downlink multiuser video trans-
mission over wireless lossy networks,” IEEE Trans. Image Process.,
vol. 17, no. 9, pp. 1663–1671, Sep. 2008.

[40] B. Girod, M. Kalman, Y. Liang, and R. Zhang, “Advances in channel-
adaptive video streaming,” Wireless Commun. Mobile Comput., vol. 2,
no. 6, pp. 549–552, Sep. 2002.

[41] H. P. Shiang and M. van der Schaar, “Multi-user video streaming over
multi-hop wireless networks: A distributed, cross-layer approach based
on priority queuing,” IEEE J. Sel. Areas Commun., vol. 25, no. 4, pp.
770–785, May 2007.

Yu Zhang (S’08) received the Bachelor’s and Master’s degrees from Tsinghua
University, Beijing, China, in 2006 and 2008, respectively.

He is currently working toward the Ph.D. degree with the Department of Elec-
trical Engineering, University of California, Los Angeles.

Fangwen Fu (S’08) received the Bachelor’s and Master’s degrees from Ts-
inghua University, Beijing, China, in 2002 and 2005, respectively.

He is currently working toward the Ph.D. degree with the Department of Elec-
trical Engineering, University of California, Los Angeles.

Mihaela van der Schaar (SM’04–F’10) received
the Ph.D. degree from Eindhoven University of
Technology, The Netherlands, in 2001.

She is now an Associate Professor with the
Electrical Engineering Department, University of
California, Los Angeles.


